Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            As precipitation analysis reveals critical statistical characteristics, temporal patterns, and spatial distributions of rainfall and snowfall events, it plays an important role in planning urban drainage systems, flood forecasting, hydrological modeling, and climate studies. It helps engineers design climate-resilient infrastructure capable of withstanding extreme weather events, which is becoming increasingly important as precipitation patterns change over time. With precipitation analysis, multiple valuable information can be determined, such as storm intensity, duration, and frequency. To enhance understanding of precipitation data and analysis results, researchers often use graphical representation methods to show the data in visual formats. Although existing precipitation analysis and basic visual representations are helpful, it is critical to have a comprehensive analysis and visualization system to detect significant patterns and anomalies in high-resolution temporal precipitation data more effectively. This study presents a visual analytics system enabling interactive analysis of hourly precipitation data across all U.S. states. Multiple coordinated visualizations are designed to support both single and multiple-station analysis. These visualizations allow users to examine temporal patterns, spatial distributions, and statistical characteristics of precipitation events directly within visualizations. Case studies demonstrate the usefulness of the designed system by evaluating various historical storm events.more » « lessFree, publicly-accessible full text available May 13, 2026
- 
            In the field of visualization, understanding users’ analytical reasoning is important for evaluating the effectiveness of visualization applications. Several studies have been conducted to capture and analyze user interactions to comprehend this reasoning process. However, few have successfully linked these interactions to users’ reasoning processes. This paper introduces an approach that addresses the limitation by correlating semantic user interactions with analysis decisions using an interactive wire transaction analysis system and a visual state transition matrix, both designed as visual analytics applications. The system enables interactive analysis for evaluating financial fraud in wire transactions. It also allows mapping captured user interactions and analytical decisions back onto the visualization to reveal their decision differences. The visual state transition matrix further aids in understanding users’ analytical flows, revealing their decision-making processes. Classification machine learning algorithms are applied to evaluate the effectiveness of our approach in understanding users’ analytical reasoning process by connecting the captured semantic user interactions to their decisions (i.e., suspicious, not suspicious, and inconclusive) on wire transactions. With the algorithms, an average of 72% accuracy is determined to classify the semantic user interactions. For classifying individual decisions, the average accuracy is 70%. Notably, the accuracy for classifying ‘inconclusive’ decisions is 83%. Overall, the proposed approach improves the understanding of users’ analytical decisions and provides a robust method for evaluating user interactions in visualization tools.more » « less
- 
            Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/ Hugo101/HyperEvidentialNN.more » « less
- 
            Neurological disabilities cause diverse health and mental challenges, impacting quality of life and imposing financial burdens on both the individuals diagnosed with these conditions and their caregivers. Abnormal brain activity, stemming from malfunctions in the human nervous system, characterizes neurological disorders. Therefore, the early identification of these abnormalities is crucial for devising suitable treatments and interventions aimed at promoting and sustaining quality of life. Electroencephalogram (EEG), a non-invasive method for monitoring brain activity, is frequently employed to detect abnormal brain activity in neurological and mental disorders. This study introduces an approach that extends the understanding and identification of neurological disabilities by integrating feature extraction, machine learning, and visual analysis based on EEG signals collected from individuals with neurological and mental disorders. The classification performance of four feature approaches—EEG frequency band, raw data, power spectral density, and wavelet transform—is assessed using machine learning techniques to evaluate their capability to differentiate neurological disabilities in short EEG segmentations (one second and two seconds). In detail, the classification analysis is conducted under two conditions: single-channel-based classification and region-based classification. While a clear demarcation between normal (healthy) and abnormal (neurological disabilities) EEG metrics may not be evident, their similarities and distinctions are observed through visualization, employing wavelet features. Notably, the frontal brain region (frontal lobe) emerges as a crucial area for distinguishing abnormalities among different brain regions. Also, the integration of wavelet features and visual analysis proves effective in identifying and understanding neurological disabilities.more » « less
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            Analyzing network traffic activities is imperative in network security to detect attack patterns. Due to the complex nature of network traffic event activities caused by continuously changing computing environments and software applications, identifying the patterns is one of the challenging research topics. This study focuses on analyzing the effectiveness of integrating Multi-Resolution Analysis (MRA) and visualization in identifying the attack patterns of network traffic activities. In detail, a Discrete Wavelet Transform (DWT) is utilized to extract features from network traffic data and investigate their capability of identifying attacks. For extracting features, various sliding windows and step sizes are tested. Then, visualizations are generated to help users conduct interactive visual analyses to identify abnormal network traffic events. To determine optimal solutions for generating visualizations, an extensive evaluation with multiple intrusion detection datasets has been performed. In addition, classification analysis with three different classification algorithms is managed to understand the effectiveness of using the MRA with visualization. From the study, we generated multiple visualizations associated with various window and step sizes to emphasize the effectiveness of the proposed approach in differentiating normal and attack events by forming distinctive clusters. We also found that utilizing MRA with visualization advances network intrusion detection by generating clearly separated visual clusters.more » « less
- 
            Network traffic data analysis is important for securing our computing environment and data. However, analyzing network traffic data requires tremendous effort because of the complexity of continuously changing network traffic patterns. To assist the user in better understanding and analyzing the network traffic data, an interactive web-based visualization system is designed using multiple coordinated views, supporting a rich set of user interactions. For advancing the capability of analyzing network traffic data, feature extraction is considered along with uncertainty quantification to help the user make precise analyses. The system allows the user to perform a continuous visual analysis by requesting incrementally new subsets of data with updated visual representation. Case studies have been performed to determine the effectiveness of the system. The results from the case studies support that the system is well designed to understand network traffic data by identifying abnormal network traffic patterns.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available